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A novel approach to the art of the computational simulation of modern flying vehicles using nonlinear aerodynamics
by the method of CFD algorithms is presented. The method employs the concept of system identification to
characterize nonlinear systems in terms of generalized state space coordinates. Furthermore, modal coordinates are
used to formulate the equations of motion of the total vehicle system so that the computational effort will be kept at
minimum cost. The proposed analytical concept is validated using simple test cases. (Author)
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Abstract
A novel approach to the art of computational
simulation of modern flying vehicles using
nonlinear aerodynamics by the method of
CFD algorithms is presented and should
hopefully advance the art of modern aircraft
design. The method employs the concept of
system identification to characterize
nonlinear systems in terms of generalized
state space coordinates. Furthermore, modal
coordinates are used to formulate the
equations of motion of the total vehicle
system so that the computational effort will
be kept at minimum cost. The proposed
analytical concept is validated using simple
test cases.
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Introduction
In recent years computational fluid
dynamics (CFD) has evolved as a reliable
aerodynamic loads prediction tool. But, its
utilization in the design process is limited
due to intensive computation required to
obtain the air loads accounting for several
variables such as structural flexibility,

aircraft incidences and angular rates, flight
control interaction and propulsion. An
aircraft design which includes the
interaction of multidisciplines would exhibit
enhanced structural integrity and aircraft
performance. This view point was expressed
by the specialists of the multi-national
cooperative program team who conducted
several investigations to assess the impact of
active controls technology (ACT) on the
structural integrity of aerospace vehicles [1].
In a recent study Bhatia and Wertheimer
have further emphasized the importance of
aeroelastic effects in the design of high
speed civil transport aircraft (HSCT) [2].

Towards this goal, a conceptual synergistic
analysis methodology to compute flight
loads and dynamic characteristics of air
vehicles was presented in an earlier paper
[3]. The multidisciplinary system considered
in [3] consisted of the interaction of
structures, inertia, digital flight control
systems (DFCS), aerodynamics and
propulsion systems. The concept of system
identification was used to reduce the total
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vehicle system into a simplified state space
model and to compute design loads.

As a natural extension, this paper discusses
certain analysis and design issues associated
with the application of the nonlinear airloads
computed by the CFD methods. The CFD
methods solve for airloads in time domain
including the interaction of several variables
such as angle of attack, control surface
deflections, aircraft angular rates and
accelerations and elastic deformation of the
aircraft. Aircraft performance and stability
analysis, and design methods often require
the derivatives of the air loads with respect
to state and design variables. Computation
of these derivatives in a straight forward
manner using CFD algorithms is
computationally intensive. However, it is
possible to estimate linearized derivatives of
a nonlinear system by means of system
identification concept. This paper presents
an overview of the computation of the
derivatives of nonlinear systems in an
economical manner. These derivatives are
then used to conduct flight maneuver
analysis of aircraft. A brief outline of the
approach is presented next.
Flight Maneuver Analysis
The dynamics of the aircraft consists of rigid
body modes and vibration modes. The
frequency spectrum of these modes are well
separated, and hence, the rigid body
equilibrium and elastic degrees of freedom
can be solved separately. Thus, the rigid
body equations of motion of maneuvering
aircraft in wind axis system can be written
as [3]:

MV
MVy
lyy*

e 0

fTcosa- Mgsin/l
|Tsino:- Mgcosy[ (I)

where M is the mass of the aircraft, / is
the pitching moment of inertia, V is the
aircraft velocity along the flight path. The
nonlinear aerodynamic forces as computed
from the CFD code is given by the first
column on the right hand side of equation
(1). The body forces and thrust components
are given by the first two rows of the second

column. The climb angle denoted by y and
the pitch angle by, 6. The aerodynamic
angle of attack is given by

a = 0 - Y (2)
The elastic equilibrium equations are given
by

where ee

(3)

is the generalized stiffness
matrix, Fe is the generalized net load vector
(i.e. sum of aerodynamic and inertia loads)
corresponding to the vibration modes , T]e.

Equation (1) can be written in the state space
form;

= F(X,u) (4)

where the system level state space vector F
accounts for synergistic contributions from
various disciplines.
The state space vector, X is given by

VI
7x =
e

(5)

and U denotes a vector of flight control
variables such as pitch, roll, and yaw control
commands, and including, if required, thrust
vectoring control parameters.
Using truncated Taylor series, equation (4)
can be rewritten as

F (6)

The computation of the derivative matrices,
dF_ and dP_ becomes expensive, especially
1JX Ik
if CFD methods are used to evaluate
nonlinear aerodynamic loads. To overcome
this difficulty and to simplify the design
process in the manner of an automated
sense, the present method employs the
concept of system identification. Then, the
equations of motion of a nonlinear system
can be written in terms of state space
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coordinates. This approach has the potential
to reduce the cost of design process and the
design cycle time, in preliminary as well as
in full scale design phases.
The aerodynamic solutions in CFD methods
require large number of repeated
computation of the flow variables. These
solution steps can be used as the learning
cycles to establis.h the dynamic
characteristics of any nonlinear system using
regression or neural network methods. These
methods require a number of input and
output samples taken at discrete time
intervals. In any transient analysis it is
possible to compute F and X at any time tn.
Then, using X as input and F as the output,
the Jacobian of F at Xn and Un can be
computed.
Equation 6, together with equation 3, can be
solved for the aircraft state variables, X,
subject to the pilot command, uc or the
target load factor N^. However, when
dealing with agile aircraft which are
designed with reduced stability margin,
there is a need for feedback flight control
laws to maintain aircraft stability and
superior maneuver performances. A brief
outline of the feedback control law design
and transient maneuver analysis are
presented in the following sections.
Feedback Control Law Design
The Hamiltonian cost function may be
written as

The first term is included to minimize the
constraints, while the second term is used to
minimize the control power requirement.
The last term denotes the equations of
motion with A, as a vector of Lagrangian
constants.

For symmetric maneuver analysis the
constraints are given by

e(2) = q ' ZT normal load factor
pitch acceleration (8)

The normal acceleration at aircraft center of
gravity is given by

%, = vr
Then, the corresponding load factor is

g

(9)

(10)

The error function £, using equations (6) and
(8) can be written as

e = CX + Dw + /0 -/r (11)
where the target vector quantity is given by

fr = (12)

Since, the target acceleration is zero, the
maneuver represents steady pull-up or push-
down pitch rates depending on the sign of
the load factor, N^- The desired final
condition can be achieved by means of
optimally selected control input, u, as
discussed in the following paragraphs.
The principle of optimal control theory
yields the following Hamiltonian matrix
equations (i.e. state and costate equations);

-B
-AT (13)

together with the necessary feedback control

_ .] - T dF
du

where,

(14)

ax 3u

ou

Q-Q-
in which

T

ou

= CQC

(15)

(16)

(17)

(18)
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Q = CTQD

<R = R + DT

f = fo ~ JT

/' = DTQf

(19)

(20)

(21)

(22)

(23)

(24)

The solution of the two point boundary
value problem of equation (13) can be
written as;

where

and

(26)

and, O and *F denote transition matrices.
The end conditions are given by

) = Xa (27)

(28)

because the error at target time is zero.
Hence, Lagrangian coefficients are given by

(29)

Finally, the feedback control can be written
as

where

and

&L
du

(30)

(31)

(32)

This paper seeks to address two problems.
The first problem is, the computation of
maneuver design loads including the
interaction of flight control systems. The
solution to this problem is given by equation
(25).
The second problem is the prediction of
aeroelastic instability, such as flutter and
divergence. The aeroelastic stability
characteristics of a nonlinear system can be
determined by means of the Lyapunov
energy criteria, which in the simplest form,
may be stated as;

= -XTPX>0 (33)

(34)

and its rate is given by

V = ~FT

2
where P is the Riccati matrix which is
derived from the eigenvectors of the
Hamiltonian matrix of equation (13). The
elements of the Hamiltonian matrix are
denoted by A, B, and Q matrices.
Flight Maneuver Module :
ENS AERO CFD code [5 and 6], developed
by NASA/Ames, has been updated with a
flight maneuver analysis module. This
module computes the generalized force
vector, F, and solves for the aircraft state
vector, X. The local derivatives of the of the
nonlinear generalized force vector, 5F

cfc
and cF. are computed using a modified

du
version of the autoregression algorithm.
These derivatives are used to compute the
feedback control input, u. A subroutine to
compute the Riccati matrix, P, and the
Lyapunov functions V and V , is also
included in the flight maneuver module to
compute static and aeroelastic stability
characteristics (flutter and divergence
speeds) of the aircraft.
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Discussion of the Results :
The double delta wing configuration shown
in Figure 1 is used to compute unsteady
airloads and flight maneuver loads including
its aeroelastic stability. The wing has a
circular airfoil of 6% thick, and leading edge
sweep angle of 50.4 degrees. The control
surface is located at 56.6% span and behind
80% chord line. This wing was tested in the
NASA Langley's transonic dynamic tunnel
(TDT). The steady and unsteady airload data
are reported in Reference [8]. The
preliminary results are reported in the
present version of this paper. The final paper
will include stability derivatives and the
results of maneuver loads analysis.

J

u
56.6% 82.9% spar

-45.08 in.—————H

Figure 1. Planform of Clipped Delta Wing
with Trailing-Edge Control Surface

Unsteady Airloads Computation :
The flow domain of this wing was
represented by array of C-H grids consisting
of 151 nodes in the flow direction, 44 nodes
in the span direction and 34 nodes in the

normal direction to the wing planform.
Baldwin-Lomax viscous model was used to
capture the leading edge vortex phenomena.
To verify the accuracy of the ENSAERO
code in oscillatory motion the control
surface motion was set at 8 Hz with an
amplitude of 6.65 deg at M=0.9, oc=3 deg
and Re = 17x10 based on the root chord.
The computed pressure distributions in
terms of magnitude and phase angle are
correlated with the experimental data as
shown in Figure 2. The prediction is seen to
be excellent. The accurate prediction of the
phase angle and control surface loads is very
important to balance the aircraft. Otherwise
inaccurate aircraft state vectors will be
computed resulting in wrong design loads
and wrong performance characteristics.

Clipped dtlta wing
!»„, = 0.9, R«« 17x10*
a M V, 8 » 8.95'
k* 0.588
Grid: 151 x 41 x M

—— Computation
a Experiment, H«* «t ll.

Figure 2. Comparison of unsteady
pressure distribution on the upper

surface of clipped delta Wing with the
experimental data.

219

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
A

pr
il 

7,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.1
99

6-
13

42
 



REFERENCES

1. Noll, T. E., Austin, E., Donley, S.,
Graham, G., Harris, T., Kaynes, I., Lee,
B. H. K., and Sparrow, J., Impact of
Active Controls Technology on
Structural Integrity, Journal of Aircraft,
Vol. 30, NO. 6, Nov-Dec. 1993.

2. Bhatia, K. G., and Wertheimer, J.,
Aeroelastic Challenges for a High Speed
Civil Transport, AIAA-93-1478-CP, Part
6. The 34th AIAA / ASME
/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, La
Jolla, CA. April, 19-22, 1993.

3. Appa, K. and Argyris, J., Computational
Aircraft Dynamics and Loads, Sadhana,
Vol. 19, Part 3, June, 1994, pp. 467-485,
Indian Academy of Sciences, Bangalore,
India.

4. Appa, K. and Argyris, J., Nonlinear
Multidisciplinary Design Optimization
Using System Identification and Optimal
Control Theory, Paper AIAA-95-1481,
36th AIAA ASME/ASCE/AHS/ASC,
Structures, Structural Dynamics and
Materials Conference, April 10-13,
1995/ New Orleans, LA. (also, in
Computer Methods in Applied
Mechanics and Engineering, Vol. 128,
Nos. 3-4/15 December 1995, pp. 419-
432.)

5. Guruswamy, G. P. , "User's Guide for
ENSAERO - A Multidisciplinary
Program for Fluid/Structural/Control
Interaction Studies, " NASA TM
108853, October, 1994.

6. Guruswamy, G. P. and Tu, E. L.
Euler/Navier-Stokes Flow Computations
on Flexible Configurations for Stability
Analysis, AIAA 95-1292, 36th AIAA
SDM Conf, April 1995, New Orleans,
LA

7. Obayashi, S., and Guruswamy, G. P.,
"Navier-Stokes Computations for

Oscillating Control Surfaces," Journal of
Aircraft Vol. 31, No. 3, May-June 1994,
pp. 631-636.

8. Hess, R. W., Cazier, F. W., Jr., and
Wynne, E. C., "Steady and Unsteady
Transonic, Pressure Measurements on a
Clipped Delta Wing for Pitching and
Control-Surface Oscillations," NASA
TP-2594, October 1986.

220

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
A

pr
il 

7,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.1
99

6-
13

42
 


